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A red blood cell (RBC) in a microfluidic channel is highly interesting for

scientists in various fields of research on biological systems. This system has

been studied extensively by empirical, analytical, and numerical methods.

Nonetheless, research of predicting the behavior of an RBC in a microchannel

is still an interesting area. The complications arise from deformation of an

RBC and interactions among the surrounding fluid, wall, and RBCs. In this

study, a pressure-driven RBC in a microchannel was simulated with a three-

dimensional lattice Boltzmann method of an immersed boundary. First, the

effect of boundary thickness on the interaction between the wall and cell was

analyzed by measuring the time of passage through the narrow channel.

Second, the effect of volume conservation stiffness was studied. Finally, the

effect of global area stiffness was analyzed. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960205]

INTRODUCTION

Understanding the deformation of a cell is important to predict its properties in a micro-

channel, path selection in a blood vessel, and metastasis of cancer cells.1–3 In the past, to

measure cell properties, a single cell had to be extracted by means of devices such as a

micropipette, optical tweezer, or atomic force microscopy (AFM).4–6 The development of

recent microfluidic methods led to various protocols for quantification of cell properties in a

microchannel without extracting stand-alone cells.7,8 Few of those methods include straining

the cell with filters at the outlet of the channel, measurement of the time for the cells to reach

the outlet, and separation of cells by density, size, or deformability.9,10 These methods enable

us to measure averaged properties of a cell, but it is not available to measure amounts of

force on a single cell.11 To overcome these limitations of experiments and to uncover the hid-

den physics behind various phenomena, computational fluid dynamics (CFD) is used

lately.3,12–15

Most of the studies by CFD solve the solid and fluid separately in different grids and then

analyze the interaction between them by an interpolation method. The deformation and migra-

tion of the solid are calculated by assuming the no-slip boundary condition at the solid-fluid

interface. These deformations and migration of the solid are then applied to the fluid as an

external force. The fluid itself is solved by several methods such as Navier-Stokes equations,

dissipative particle dynamics, or the lattice Boltzmann method (LBM).16–19 These solutions for

the fluid are well known and suitable for general use, but the solution for the solid is not sim-

ple. To solve the solid, the stretching and bending of the membrane must be analyzed at least.17

Moreover, many studies stipulate the equilibrium of volume and surface for solid mod-

els.12,16,19–22 There are also various models to solve the viscoelasticity of the cell.18,23,24
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The numerical approach of the cell deformation has received considerable attention in

numerous areas such as membrane property, fluctuation of membranes, and multi scale model-

ing of cells to hydrodynamic interaction techniques. Generally, the deformation of cells is

expressed in network membrane that uses triangular membranes. Various studies have been

done to apply the complicated property of a cell in the triangular membranes.14,22,32 In order to

describe the complicated properties of cell, shear and bending elasticity, area stretching, and

volume conservation should be analyzed and the parameters for each of these properties are

needed to be determined. These parameters are derived by empirical data.5 In order to apply

empirical data in the simulation, the constants that determine the cell property are derived by

calibration. A few researchers have provided a rigidity value of the cell in the simulation as a

deformation variable;16 however, it is difficult to use it without calibration unless the numerical

method, computational domain, and timescale in the simulation are exactly the same.

Other researchers described the relation among shear modulus, area dilation, and bending

coefficients. They interpreted the cell properties by using equations of shear modulus, enabling

it to describe the cell by means of a single shear modulus.12,25 Furthermore, a few researchers

explained the volume constraint coefficient that is chosen large enough to restrain initial vol-

ume.16 Similarly, there have been attempts to solve global area dilation, where the explanation

of equation derivation is also large enough to approximate the membrane. Therefore, it is diffi-

cult to apply the empirical cell properties to a simulation directly without calibration. Studies

of cell deformation to the changes in values of each constant representing the cell properties

are required for cell simulation and for prediction of the cell’s characteristic based on the cell’s

behavior.

The objectives of this paper are to conduct a parametric study to analyze the volume stiff-

ness KV and global area dilation stiffness KAG of four parameters and to determine the relation

between them and the cell deformation. Many researchers examined the deformation and migra-

tion of cells inside a fluid with ideal shear flow,26,27 but this method is relatively difficult for

setting up an experiment. In contrast, our study is performed under microchannel conditions.

For the cell, the biconcave shape of a red blood cell (RBC) is used.

The influence of KV and KAG in a global simulation as well as the cell deformation and

migration as a function of boundary thickness are being examined here. The time for cells to

pass through the channel is measured at different values of KV and KAG, along with the analysis

of the degree of deformation and transit time. Moreover, the velocity and deformation of cells

as a function of boundary thickness are also studied. LBM is used for the fluid solution,

whereas the immersed boundary methods are applied to fluid structure interactions. The numeri-

cal methods for solving cell deformation and migration inside a microchannel are explained in

detail in this paper.

NUMERICAL METHODS

Lattice Boltzmann method

This method is widely used to solve microfluidics.3,28–30 The single-relaxation-time

Bhatnagar-Gross-Krook model is used to solve an incompressible fluid. The governing equation

with the forcing term can be written as31

fi xþ eiDt; tþ Dtð Þ � fi x; tð Þ ¼ �
1

s
fi x; tð Þ � fi

eq x; tð Þ
� �

þ Dt 1� 1
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þ
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where for the D3Q19 model
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In the above equation, the density distribution function fiðx; tÞ indicates the proportion of

particles moving with the i th lattice velocity at lattice site x and time t, Dt is the time step,

s is the particle relaxation time, ei is the discrete microscopic velocity, fi
eq is the local equilib-

rium distribution function, and csð¼ c=
ffiffiffi
3
p
Þ is the speed of sound (c ¼ Dx=Dt). Fluid density

q and velocity u can be calculated using the following formula:

q ¼
X

i

fi qu ¼
X

i

fiei: (5)

The kinematic viscosity is given as

� ¼ s� 1

2

� �
cs

2Dt: (6)

Please refer to the Appendix for the detailed conversion of LBM units to Systeme International
(SI) units.

3D deformable particle mechanics

To understand RBC deformation, the fluid-structure interactions among the membrane of

RBCs, internal fluid of RBCs, and plasma need to be considered. The spring network models

have been used to solve deformation of biological cells such as RBCs and other deformable

particles such as hydrocapsules.3,12,17 The triangular meshes, which are the most common

meshes for the spectrin network of RBC membranes, were used. For the constrained spontane-

ous shape of RBCs, volume, area, stretching, and bending were solved.16,20,32,33 A viscoelastic

spring network model, which takes into account the total volume conservation, surface area

dilation, bending, and stretching of the membrane as well as mesh density, was used.16,32

The membrane of RBC is represented by the spring network consisting of Lagrangian

nodes shown in Fig. 1. The stretching force between Lagrangian nodes X1 and X2 can be writ-

ten as

FIG. 1. The spring network of faces W123 and W134. (a) L is the distance between Lagrangian nodes. N123 is the center of

three nodes: X1, X2, and X3. (b) ~n is the normal vector of face W, hW123W134
is the instantaneous angle between two faces:

W123 and W134.
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FSðX1;X2Þ ¼ �FSðX2;X1Þ ¼ �kSjðk12ÞDL12
~L12 ðDL12 ¼ L12 � L0

12Þ; (7)

where kS is the stretching constant. The non-linear (hyperelastic) function for neo-Hookean

behaviour j is found as26

j k12ð Þ ¼ k12ð Þ0:5 þ k12ð Þ�2:5

k12 þ k12ð Þ�3
; k12 ¼

L12

L0
12

� �
; (8)

where L is the instantaneous distance and L0 is the spontaneous distance between Lagrangian

nodes.

The normal vector of face W123 can be written as

~n123 ¼ ðX2 � X1Þ � ðX3 � X1Þ=jðX2 � X1Þ � ðX3 � X1Þj: (9)

The center of the plane is expressed as

N123 ¼
X1 þ X2 þ X3ð Þ

3
: (10)

The bending force between faces W123 and W134 can be formulated as

FBðX2Þ=~n123 ¼ FBðX4Þ=~n134 ¼ �kB½1� cosðhW123W134
� h0

W123W134
Þ�; (11)

hW123W134
¼ p� cos�1ð~n123 �~n123Þ when cW123W134

� 0

otherwise hW123W134
¼ pþ cos�1ð~n123 �~n123Þ; (12)

cW123W134
¼ ðN123 � N134Þ �~n123; (13)

FB X3ð Þ ¼ FB X3ð Þ ¼ FB X2ð Þ þ FB X4ð Þ
2

; (14)

where kB is the bending constant, h is the instantaneous angle, and h0 is the spontaneous angle,

respectively. cWW is the angle indicator that determines whether the angle is obtuse or acute.

The spring energy system to solve the deformation relates a one-triangle face to the overall

energy can be written as12,33,35,36

EAL W123ð Þ ¼ kAL
DA W123ð Þð Þ2

2A W123ð Þ : (15)

Similarly, the volume energy can also be expressed as20

EV W1231ð Þ ¼ �kV
V � V0ð Þ2

V0

~n123: (16)

The spring network model in this paper is a simplified alternative model instead of energy

model. The area and volume conservation constraints can be obtained as21,32

FA W123;X1ð Þ¼FAL W123;X1ð ÞþFAG W123;X1ð Þ¼� kAL
DA W123ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A W123ð Þ
p þkAG

DAT

AT

 !
X1�N123ð Þ; (17)

AðW123Þ ¼ ððX2 � X1Þ � ðX3 � X1ÞÞ=2; (18)

FV W123;X1ð Þ ¼ �kV
V � V0

3V0

A W123ð Þ~n123; (19)
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V ¼
X
W

ðN �~nÞAðWÞ=3; (20)

where kAL, kAG, and kV are the local area, global area, and volume constraint constants, respec-

tively. The terms AT , V, and V0 are the total area, instantaneous total volume, and spontaneous

total volume, respectively.

Total elastic force under the constrained spontaneous shape can be formulated as

F ¼ FV þ FA þ FS þ FB: (21)

Lattice Boltzmann immersed boundary method

The immersed boundary method for the interaction between the fluid and RBC is as follows:37–39

fðx; tÞ ¼
ð

Dðx� Xðs; tÞÞFðs; tÞds; (22)

@X s; tð Þ
@t

¼ u X s; tð Þ; tð Þ ¼
ð

u x; tð ÞD x� X s; tð Þð Þdx; (23)

D x� X s; tð Þð Þ ¼
1

64h3
1þ cos

px

2h

� �� �
1þ cos

py

2h

� �� �
1þ cos

pz

2h

� �� �
for D3Q19

when jx and y and zj � 2h; otherwise D xð Þ ¼ 0; (24)

where f, x, and u are the force density acting on the fluid node, Eulerian coordinates, and fluid

velocity, respectively. X and F are the Lagrangian coordinates and restoring force density of

the RBC, respectively. D is the Dirac delta function for interpolation. Equations (22)–(24) rep-

resent the immersed boundary equation for communication between Eulerian and Lagrangian

coordinates. Unknown factors are the force per unit volume, fðx; tÞ, applied by the immersed

boundary to the fluid, and the velocity of each Lagrangian node uðXðs; tÞ; tÞ. Equation (22)

describes the force density of fluid, fðx; tÞ, calculated from Lagrangian restoration of the elastic

force density, Fðs; tÞ, via interpolation over the immersed boundary. Equation (23) assumes that

the no-slip boundary condition is applied to the membrane because the Lagrangian nodes move

at the same velocity as the surrounding fluid. Equation (24) uses the 3D Dirac delta function,

Dðx� Xðs; tÞÞ, which relates interactions between Eulerian coordinates (fluid nodes) and

Lagrangian coordinates (deformable particle boundary nodes).

RESULTS

Simulation overview

Figure 2 shows a schematic of the domain used for simulation of a red blood cell (RBC) in

a microchannel. The formula of Evans and Fung40 is used to describe the geometry of the RBC

TðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=R0Þ2

q
½C0 þ C1ðr=R0Þ2 þ C2ðr=R0Þ4�: (25)

T(r) is the thickness of RBC and is determined by the location of the radius of the RBC

toward its center. The following parameters are used: R0 ¼ 3:9lm, C0 ¼ 0:81lm, C1 ¼ 7:83lm,

C2 ¼ �4:39lm, T1 ¼ 0:81lm, and T2 ¼ 2:4lm. Our analysis of geometric features of the micro-

channel is inspired by resent empirical results11,41,42 and simulation results.12,13 The length of

the domain is L ¼ 24lm, height of the domain is H ¼ 4:8lm, width of domain is w ¼ 3:2lm,

the length of the wide segment is l1 ¼ 8lm, length of the narrow segment is l2 ¼ 4lm, and the

connected angle between the narrow segment and width is h ¼ 45�.
The body force is added at all fluid nodes to set the pressure gradient driven flow. The

pressure gradient can be expressed as a function of L
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DP ¼ qLFP: (26)

For all cases in this study, one pressure gradient as 12Pa is used. The characteristic velocity and

time in this simulation can be calculated: U ¼ DPw2=ð8lLÞ and T ¼ L=U, respectively. Capillary

number Ca represents the relative effect of viscous and elastic forces and is defined as follows:

Ca ¼ lU=Gs: (27)

Ca values in this study are used in the range 0.011 to 0.055.

Physiologically, an RBC is composed of a membrane and inner fluid. The inner fluid is

called the cytosol, which contains hemoglobin and other proteins. The membrane of RBC enclo-

ses a viscous of cytosol.33 Because of these components, the cytosol has greater viscosity than

plasma does. The viscosity difference between plasma and cytosol affects the cell deformation

and motion. In this study, the cytosol viscosity and plasma viscosity are set l ¼ 10�3 Pa s to

reduce the viscosity difference effect and for simplicity, as in many other numerical stud-

ies.12,17,33 The density values of the RBC and plasma are set to q ¼ 1000 kg=m3.

The stretching constant kS and area dilation constant kAL for most of the deformable solid

simulations are based on a continuum model, which is determined by shear modulus Gs ¼
ffiffi
3
p

4
kS

and Young’s modulus E ¼ 2ffiffi
3
p kS.34 It is hard to change three values kS; kAL; kB separately for a

certain property. For the sake of simplicity and generalization, the dimensionality of the con-

stant value of elasticity is reduced as using the ratio between the bending forces and in-plane

stretching forces. The ratio of a bending force to stretching force can be estimated as

n ¼ kB=ðR2kSÞ ¼ Oð10�3Þ.12,25 Similarly, dilation modulus can be estimated as kA=kS ¼ 2:0.

FIG. 2. (a) A schematic of the domain used for simulation of a red blood cell (RBC) in a microchannel. L is the length of

the domain, H is the height of the domain, W is the width of the domain, l1 is the length of the wide segment, l2 is the

length of the narrow segment, w is the width of the narrow section, and h is the connected angle between the narrow seg-

ment and width. (b) The shape of the RBC is described by Eq. (25).
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For the wall-cell interaction, a repulsive force is added. This force is needed to avoid

boundary penetration, as commonly done in the field of fluid structure interactions.12,43 As the

repulsive force, the cutoff spring model is used, which can be expressed as

FW ¼ 0 dd > dr

�kwdd dd � dr
;

	
(28)

where dd is the instantaneous distance between the cell and wall and dr is the boundary thick-

ness of the gap to activate the repulsive force, respectively.

The repulsive stiffness kW is set to a value four to seven orders of magnitude greater than

the shear modulus.43 kW ¼ 0.1 is used for the repulsive stiffness.

Wu and Feng12 used root mean square deviation of the displacement ratio with instanta-

neous distance L and spontaneous distance to obtain the local deformation e on the cell mem-

brane. The local deformation can be formulated as

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP L

L0

� 1

� �2

NS

vuuut
; (29)

where NS is the number of spring connections at each node. This approach is very effective at

determining deformation on the cell membrane quantitatively. The local deformation contour is

used to show the deformation on the cell membrane.

Validation

One of the most general methods for validation of numerical results on a deformable cell is

a comparison with the optical tweezer experiment.5 For this procedure, the numerical experiment

of optical tweezer was set with the following values for healthy human RBCs: kS ¼ 0:00126;
kAL ¼ 0:002; kB ¼ 0:00029; kV ¼ 0:008; kAG ¼ 0:02. The axial and transverse diameters of the

RBCs were measured at different stretching forces. These results were compared with optical

tweezer experiment results5 and other numerical simulation results.17 Axial and transverse diame-

ters were defined as the longest distance in each direction. Figure 3 shows the comparison among

our results, empirical data, and other numerical results.

The simulation of the trajectories of RBCs through the narrow channel for three values are

shown in Fig. 4 for the comparison with the data of Wu and Feng.12 The transit time of both

results has increased by the increase of Gs from 5 to 15 lN=m. Both results have shown that

RBC could not pass through the channel when Gs¼ 25 lN=m. The cause of the difference

FIG. 3. Comparison among optical tweezer experiment results,5 other numerical simulation data,15 and numerical results in

this paper.
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between two results is from the difference of RBC model and boundary conditions applied in

the simulation. The tendency between two results is matched with each other. The cause of the

difference between two results is from the difference of RBC model and boundary conditions

applied in the simulation.

Effects of boundary thickness of the gap

A full description of the microchannel with a deformable cell requires a complete under-

standing of the interactions between cells, between the cells and the fluid, between the wall and

the fluid, and between the cell and the wall. In this subsection, the interaction between the cell

and wall is focused on as boundary thickness changes.

Figure 5 shows the trajectories of an RBC through the narrow channel at different values

of boundary thickness. The properties of the RBC in both cases were set to be the same Gs ¼ 5 lN=m

(kS ¼ 0:001; kAL ¼ 0:002; kB ¼ 0:00029), kV ¼ 0:008; kAG ¼ 0:01. The only difference among

the three cases was boundary thickness, which was dr ¼ 1:0, dr ¼ 1:5, and dr ¼ 2:0, respectively.

In Fig. 4(d), the vertical axis of graph Xc=L represents the instantaneous position of the center of

mass for a flow direction, which is normalized to the length of the domain, and the horizontal axis

FIG. 4. Trajectories of red blood cells (RBCs) through the narrow channel as function of the characteristic time for three

values.

FIG. 5. Trajectories of red blood cells (RBCs) through a narrow channel at T ¼ 0:35 for different values of boundary thick-

ness: (a) dr ¼ 1:0, (b) dr ¼ 1:5, and (c) dr ¼ 2:0. (d) Normalized location of the center of mass Xc=L plotted against char-

acteristic time for the simulation. The membrane shear modulus Gs ¼ 5 lN=m for the three cases.
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of the graph represents the characteristic time in the simulation. The entry of the channel was defined

as a starting point of a narrow channel and the exit of the channel as an ending point of a narrow chan-

nel. Figures 5(a)–5(c) illustrate a snapshot of the RBC shapes at T ¼ 0:26. The fluid layer between the

RBC and the wall becomes thicker as dr increases; the increase of dr leads to more deformation in the

narrow channel. In this case, as the size of the gap increases, the actual area where the RBC can exist

decreases, thus behaving as if the width of the channel itself is decreased. Figure 5(d) shows that the

increase in boundary thickness decreases the RBC velocity. This result can be seen as a numerical error

because general microfluidics explains that the boundary thickness between an RBC and channel wall

increases as the capillary number increases.35 To solve this problem, the boundary thickness should be

small enough. While the boundary thickness is too small (dr < 1), the repulsive force might be changed

dramatically and cause the unnatural deformation of RBC. All subsequent results are presented at

dr ¼ 1:0.

Effects of volume stiffness kV

The value kV is necessary to maintain the cell as incompressible in the simulation. When

volume of the cell decreases at high kV , the pressure inside the cell increases to maintain the

original volume. kV is related to permeability of the cell.44 To apply the shear modulus change

for area dilation constant, the weight factor of shear modulus f ðGsÞ is used: Gs ¼ 5; 15;
25ðlN=MÞ ! f ðGsÞ ¼ 1; 3; 5.

Figure 6 shows a comparison of four cases to examine the relation between kV and deforma-

tion, along with three types of shear modulus. Stiffness of each parameter is shown in Table I.

When shear modulus is low, then an increase in kV increases transit time of the RBC in the chan-

nel. The transit time is defined as the period between the time point when the center of mass of

the RBC reaches the entry and the time point when it reaches the exit.

According to Fig. 6(a), when kV is 0, the change in RBC movement under the influence of

shear modulus is small. Moreover, when kV is 0, the RBC cannot restore its original shape after

passing through the narrow channel. As kV increases, the duration of RBC’s stay in the narrow

channel also increases, and when shear modulus is 25 lN=m and kV ¼ 0:011, the RBC cannot

pass through the channel. Even though kV is not a constant for the membrane elasticity, this

behavior of the RBC is similar to that of a malaria-infected RBC in the microchannel. When

the RBC is infected with malaria, the merozoites remodel the spectrin network; this change

FIG. 6. Trajectories of red blood cells (RBCs) through the narrow channel as a function of the characteristic time for differ-

ent values of volume stiffness: (a) kV ¼ 0:0065, (b) kV ¼ 0:008, (c) kV ¼ 0:0095, and (d) kV ¼ 0:011.
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causes the RBC to become less deformable.45 According to other studies, malaria-infected

RBCs are less deformable than healthy RBCs, and infected RBCs show greater transit time for

escaping a narrow channel.12

Figure 7 shows velocity of the center of RBCs, Xc, as a function of the characteristic time

at different values of volume stiffness. The velocity of the center of RBCs was calculated by

means of the gradient of Xc. Case V1, where kV is 0, shows different characteristics as com-

pared to other cases. The velocity of Xc decreased with the increase in shear modulus. The

cases of high shear modulus revealed low velocity in the narrow channel. When kV was low,

the difference between the shear modulus 5 lN=m and shear modulus 25 lN=m was smaller,

whereas this difference grows as kV increases. When the RBC reached the entry of the narrow

channel and began to deform, velocity decreased. Nonetheless, the velocity of the RBC did not

change during passage through the narrow channel, increasing again when the cell passed the

exit. When Xc reached the exit, the velocity of Xc increased independently of the change in kV .

An increase in kV increases both resistance and transit time because it affects the RBC while it

is entering the narrow channel.

As shown in Fig. 8, when shear modulus is 5 lN=m, the transit time for each case is

slightly different, but as shear modulus increases, the influence of kV on transit time increases.

TABLE I. Cases for effects of volume stiffness.

ks kAL kAG kB kV

Case V1 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0

Case V2 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0050

Case V3 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0065

Case V4 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0080

Case V5 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0095

Case V6 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0110

FIG. 7. The velocity of the center of red blood cells (RBCs) as a function of the characteristic time at different values of

volume stiffness: (a) kV ¼ 0:0, (b) kV ¼ 0:0065, (c) kV ¼ 0:0095, and (d) kV ¼ 0:011.
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When kV is 0, the RBC could not restore its original shape; therefore, the transit time did not

change regardless of the increase in shear modulus. When kV is low (kV ¼ 0.005), the transit

time increases linearly with the increase in shear modulus. As kV increases, however, the rela-

tionship between shear modulus and transit time becomes nonlinear. As kV increases, the transit

time also increases; when shear modulus is 25 lN=m, shown in case V6, RBC cannot pass

through the channel. This result can prove that kV affects the transit time, which is directly

related to RBC rigidity. Therefore, it is important to control kV in order to determine the rigid-

ity of the RBC.

Effects of global area stiffness kAG

Figure 9 depicts a transit time graph for cases A1–A5. It was shown that when shear modu-

lus is 5 lN=m, the transit time for each case is slightly different, but as shear modulus

increases, the influence of kAG on transit time increases (Table II). In contrast, when kAG is over

FIG. 9. The effect of the global area stiffness on the transit time of red blood cells (RBCs) from entry to exit as a function

of shear modulus.

FIG. 8. The effect of the volume stiffness on the transit time of red blood cells (RBCs) from entry to exit as a function of

shear modulus.
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0.02, kAG does not affect the transit time. kAG is not a crucial parameter for modeling of the

cell because the local area dilation conservation term is present as shown in Eq. (17).

Figure 10 shows the total magnitude of local area constraint force
P

W jFALj and global

area constraint force
P

W jFAGj. The time average of area change during the transit for cases

A1-A5 at Gs ¼ 25ðlN=MÞ is 4.16%, 1.43%, 0.47%, 0.33%, and 0.26%, respectively. When the

RBC entered the narrow channel and began to deform, both total magnitude of local and global

area constraint forces increased. There was only the restoring force of the local area dilation,

when kAG is 0.0. Therefore, more local area force was needed in order to maintain the area, and

it caused the largest change of total area with kAG ¼ 0:0. With the increase of kAG,
P

W jFAGj
have increased, while

P
W jFALj have decreased. When kAG is over 0.02 (kAG > 20 kS), the area

change of RBC remains less than 0.5% and transit time reaches a plateau.

CONCLUSION

In this paper, three major issues related to cell analysis in a microchannel were studied.

First, the boundary thickness was analyzed, which is related to the repulsive force critical for

the interaction between the cell and wall. When boundary thickness was less than 1.0, unnatural

deformation of RBC was observed. As boundary thickness increases, the volume where an

RBC could exist decreases; the volume of the fluid does not change. Second, the effect of kV

on transit time in a microchannel was analyzed. As kV increases, the transit time of the RBC

also increases, as if the RBC is infected by a malarial parasite and the rigidity increases. If kV

is nonexistent, the RBC cannot restore its original shape. This result reveals that kV must be

used for proper modeling of the RBC. Third, the kAG value was analyzed, which was proven to

not be crucial for modeling of the cell. kAG, the parameter representing the total area of RBC,

influenced the transit of RBC with 0.5% or bigger change in the total area, whereas there has

been slight influence observed when the change in the total area was kept less than 0.5%. The

amount of change in the total area was kept less than 0.5% when kAG was 0.02 or bigger.

In summary, the effects of kV and kAG on cell behavior were studied here. Although the

effects of kV and kAG were proved, a correlation between those and actual cell properties has

TABLE II. Cases for effects of global area stiffness.

ks kAL kAG kB kV

Case A1 0.001 f ðGsÞ 2 ks 0 0.2 ks 0.0065

Case A2 0.001 f ðGsÞ 2 ks 0.01 f ðGsÞ 0.2 ks 0.0065

Case A3 0.001 f ðGsÞ 2 ks 0.02 f ðGsÞ 0.2 ks 0.0065

Case A4 0.001 f ðGsÞ 2 ks 0.03 f ðGsÞ 0.2 ks 0.0065

Case A5 0.001 f ðGsÞ 2 ks 0.04 f ðGsÞ 0.2 ks 0.0065

FIG. 10. Total magnitude of the force of (a) local area constraint and (b) global area constraint at Gs ¼ 25ðlN=MÞ.
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not been demonstrated yet. Generally, the volume conservation parameters have been set large

enough to maintain the volume. However, from this study, the authors have found out that the

volume constant not only maintains the incompressibility of a cell but also influences the char-

acteristics of cells and changes the transition of it. Therefore, volume conservation parameter is

related to both incompressibility and rigidity of cells. This study might help to set up the

parameters required for the simulation with empirical results. Therefore, it is necessary to deter-

mine the correlation between every stiffness variable, and cell properties must be determined in

future studies in order to design accurate simulations.
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APPENDIX: LATTICE UNIT CONVERSION

The conversion of LBM units to Syst�eme International (SI) units starts with fixing the length

unit. Generally, LBM uses one lattice for calculating the length unit. When the lattice 100 repre-

sents physical domain length 100 lm (10�4 m), the following equation applies:

100LL ¼ 10�4 m! 1LL ¼ 10�6 m; (A1)

where LL represents the lattice length (LL). Therefore, one lattice length represents 10�6 m in the

physical domain. After LL is determined, lattice mass (LM) can be determined by fixing the

density

qlattice ¼ 1LM=LL3; qphysical ¼ 1000 kg=m3; (A2)

qlattice ¼ qphysical ! 1LM=LL3 ¼ 1000 kg=m3; (A3)

1LM=ð10�6 mÞ3 ¼ 1000 kg=m3 ! 1LM ¼ 10�15 kg: (A4)

Similarly, lattice time (LT) can be determined by fixing the viscosity

�lattice ¼
1

6
LL2=LT when s ¼ 1ð Þ; �physical ¼ 10�6 m2=s; (A5)

�lattice ¼ �physical !
1

6
LL2=LT ¼ 10�6 m2=s; (A6)

1

6
10�6 mð Þ2=LT ¼ 10�6 m2=s! 1LT ¼ 1

6
10�6 s: (A7)

Other physical parameters such as lattice force LF can be derived from the determined lattice unit

1Flattice ¼ 1LF ¼ 1 LMð Þ LLð Þ= LTð Þ2 ! 1 10�15 kg
� �

10�6 mð Þ= 1

6
106 s

� �2

¼ 1

36
10�9 kg m=s2

� �
:

(A8)
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32I. Jančigov�a and I. Cimr�ak, “Non-uniform force allocation for area preservation in spring network models,” Int. J. Numer.

Methods Biomed. Eng. e02757 (2015).
33D. A. Fedosov, B. Caswell, and G. E. Karniadakis, “A multiscale red blood cell model with accurate mechanics, rheol-

ogy, and dynamics,” Biophys. J. 98(10), 2215–2225 (2010).
34H. S. Seung and D. R. Nelson, “Defects in flexible membranes with crystalline order,” Phys. Rev. A 38(2), 1005 (1988).
35X. Shi, G. Lin, J. Zou, and D. A. Fedosov, “A lattice Boltzmann fictitious domain method for modeling red blood

cell deformation and multiple-cell hydrodynamic interactions in flow,” Int. J. Numer. Methods Fluids 72(8), 895–911
(2013).

36D. A. Reasor, J. R. Clausen, and C. K. Aidun, “Coupling the lattice-Boltzmann and spectrin-link methods for the direct
numerical simulation of cellular blood flow,” Int. J. Numer. Methods Fluids 68(6), 767–781 (2012).

37C. S. Peskin, “The immersed boundary method,” Acta Numerica 11, 479–517 (2002).
38C. Pozrikidis, “Effect of membrane bending stiffness on the deformation of capsules in simple shear flow,” J. Fluid

Mech. 440, 269–291 (2001).
39Z. G. Feng and E. E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid–particles interac-

tion problems,” J. Comput. Phys. 195(2), 602–628 (2004).
40E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).

044110-14 Moon, Tanner, and Lee Biomicrofluidics 10, 044110 (2016)

http://dx.doi.org/10.1038/srep18542
http://dx.doi.org/10.1007/s10404-014-1393-z
http://dx.doi.org/10.1016/S0021-9290(99)00175-X
http://dx.doi.org/10.1529/biophysj.105.067496
http://dx.doi.org/10.1021/ac300264v
http://dx.doi.org/10.1039/C2LC40847C
http://dx.doi.org/10.1039/c0lc00345j
http://dx.doi.org/10.1073/pnas.1200107109
http://dx.doi.org/10.1038/nmeth.3281
http://dx.doi.org/10.1063/1.4817959
http://dx.doi.org/10.1016/j.taml.2015.11.006
http://dx.doi.org/10.1007/s10237-013-0497-9
http://dx.doi.org/10.1073/pnas.0504243102
http://dx.doi.org/10.1073/pnas.0504243102
http://dx.doi.org/10.1103/PhysRevE.75.066707
http://dx.doi.org/10.1016/j.jbiomech.2010.01.011
http://dx.doi.org/10.1063/1.4900952
http://dx.doi.org/10.1146/annurev-fluid-010313-141349
http://dx.doi.org/10.1002/cnm.2501
http://dx.doi.org/10.1088/0953-8984/9/42/001
http://dx.doi.org/10.1088/0953-8984/9/42/001
http://dx.doi.org/10.1017/jfm.2014.315
http://dx.doi.org/10.1073/pnas.1210236109
http://dx.doi.org/10.1039/b716612e
http://dx.doi.org/10.1016/j.applthermaleng.2014.02.056
http://dx.doi.org/10.1007/s13367-013-0022-9
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1002/cnm.2757
http://dx.doi.org/10.1002/cnm.2757
http://dx.doi.org/10.1016/j.bpj.2010.02.002
http://dx.doi.org/10.1103/PhysRevA.38.1005
http://dx.doi.org/10.1002/fld.3764
http://dx.doi.org/10.1002/fld.2534
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1017/S0022112001004657
http://dx.doi.org/10.1017/S0022112001004657
http://dx.doi.org/10.1016/j.jcp.2003.10.013
http://dx.doi.org/10.1016/0026-2862(72)90069-6


41S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,”
Lab Chip 12(13), 2369–2376 (2012).

42D. J. Quinn, I. Pivkin, S. Y. Wong, K. H. Chiam, M. Dao, G. E. Karniadakis, and S. Suresh, “Combined simulation and
experimental study of large deformation of red blood cells in microfluidic systems,” Ann. Biomed. Eng. 39(3),
1041–1050 (2011).

43C. Dong and R. Skalak, “Leukocyte deformability: finite element modeling of large viscoelastic deformation,” J. Theor.
Biol. 158(2), 173–193 (1992).

44A. Taloni, E. Kardash, O. U. Salman, L. Truskinovsky, S. Zapperi, and C. A. La Porta, “Volume changes during active
shape fluctuations in cells,” Phys. Rev. Lett. 114(20), 208101 (2015).

45A. G. Maier, B. M. Cooke, A. F. Cowman, and L. Tilley, “Malaria parasite proteins that remodel the host erythrocyte,”
Nat. Rev. Microbiol. 7(5), 341–354 (2009).

044110-15 Moon, Tanner, and Lee Biomicrofluidics 10, 044110 (2016)

http://dx.doi.org/10.1039/c2lc21045b
http://dx.doi.org/10.1007/s10439-010-0232-y
http://dx.doi.org/10.1016/S0022-5193(05)80716-7
http://dx.doi.org/10.1016/S0022-5193(05)80716-7
http://dx.doi.org/10.1103/PhysRevLett.114.208101
http://dx.doi.org/10.1038/nrmicro2110

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	f1
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	s3
	d25
	d26
	d27
	f2
	d28
	d29
	f3
	f4
	f5
	f6
	t1
	f7
	f9
	f8
	s4
	t2
	f10
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	dA6
	dA7
	dA8
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45

